Fabrication and functionalization of nanochannels by electron-beam-induced silicon oxide deposition.

نویسندگان

  • Christophe Danelon
  • Christian Santschi
  • Jürgen Brugger
  • Horst Vogel
چکیده

We report on the fabrication and electrical characterization of functionalized solid-state nanopores in low stress silicon nitride membranes. First, a pore of approximately 50 nm diameter was drilled using a focused ion beam technique, followed by the local deposition of silicon dioxide. A low-energy electron beam induced the decomposition of adsorbed tetraethyl orthosilicate resulting in site-selective functionalization of the nanopore by the formation of highly insulating silicon oxide. The deposition occurs monolayer by monolayer, which allows for control of the final diameter with subnanometer accuracy. Changes in the pore diameter could be monitored in real time by scanning electron microscopy. Recorded ion currents flowing through a single nanopore revealed asymmetry in the ion conduction properties with the sign of the applied potential. The low-frequency excess noise observed at negative voltage originated from stepwise conductance fluctuations of the open pore.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flexible and in situ fabrication of nanochannels with high aspect ratios and nanopillar arrays in fused silica substrates utilizing focused ion beam

Nanochannels fabricated in fused silica substrates are ideal tools for single (bio)molecular studies in biology and are promising in the development of innovative applications in chemistry. To obtain a higher throughput and a higher level of integration and functionalization, nanochannels with high aspect ratios and nano-in-nano structures are very much desired, but their fabrication is a chall...

متن کامل

A Nanochannel Fabrication Technique without Nanolithography

We have developed a new nanochannel fabrication technique using chemical-mechanical polishing (CMP) and thermal oxidation. With this technique, it is possible to control the width, length, and depth of the nanochannels without the need for nanolithography. The use of sacrificial SiO2 layers allows the fabrication of centimeter-long nanochannels. In addition, the fabrication process is CMOS comp...

متن کامل

Electron-beam induced deposition and autocatalytic decomposition of Co(CO)3NO

The autocatalytic growth of arbitrarily shaped nanostructures fabricated by electron beam-induced deposition (EBID) and electron beam-induced surface activation (EBISA) is studied for two precursors: iron pentacarbonyl, Fe(CO)5, and cobalt tricarbonyl nitrosyl, Co(CO)3NO. Different deposits are prepared on silicon nitride membranes and silicon wafers under ultrahigh vacuum conditions, and are s...

متن کامل

Focused ion beam induced deposition: fabrication of three-dimensional microstructures and Young’s modulus of the deposited material

In this work, some of the possibilities of focused ion beams for applications in microsystem technology are explored. Unlike most previous studies, the emphasis is on ‘additive’ techniques, i.e. localized maskless deposition of metals and insulators. More precisely, we will show the possibility of fabricating small three-dimensional structures, using focused ion beam deposition of silicon oxide...

متن کامل

Fabrication and Characterization of Nanofluidics Device Using Fused Silica for Single Protein Molecule Detection

Fabrication of nanofluidic devices was carried out and the devices were characterized. These devices will be used to trap, manipulate and detect single protein molecules in nanometer size channels in a laser fluorescence spectroscopy process to investigate dynamical and photophysical behavior of single molecules. On the substrate of fused silica (SiO2) glass wafers, Electron Beam Lithography (E...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 22 25  شماره 

صفحات  -

تاریخ انتشار 2006